

Facultad de Humanidades y Ciencias de la Educación

Carrera: Licenciatura en Filosofía

Unidad curricular: Tópico de Historia y Filosofía de la Ciencia

Título: Métodos formales en Filosofía de la ciencia

Área Temática: Filosofía e Historia de la Ciencia

Semestre: Par

La unidad curricular corresponde al primer semestre de la carrera según trayectoria sugerida por el plan

de estudios: NO

	Cargo	Nombre	Departamento/Sección
Responsable del curso	Prof. Adjunto	Matías Osta Vélez	Subunidad de Filosofía e Historia de la Ciencia
Encargado del curso	Prof. Adjunto	Matías Osta Vélez	Subunidad de Filosofía e Historia de la Ciencia
Otros participantes del curso			

El total de Créditos corresponde a:

=: 1010::			
Carga horaria presencial	48 horas		
Trabajos domiciliarios	SI		
Plataforma EVA	SI		
Trabajos de campo	NO		
Monografía	SI		
Otros (describir)	NO		
TOTAL DE CRÉDITOS	7		

Permite exoneración	NO

Propuesta metodológica del curso:

Teórico – asistencia libre	SI

Unidad curricular ofertada	NO	Cupos, servicios y
como electiva para otros		condiciones: NO
servicios universitarios		CORRESPONDE

Forma de evaluación y Modalidad:

Trabajo final y presentación oral durante el curso.

Modalidad presencial.

Para la obtención del derecho a aprobar la unidad curricular se requerirá de una calificación final de Aceptable o superior para el conjunto de las actividades de evaluación realizadas durante el curso. Una calificación final inferior a Aceptable conducirá a la necesidad de repetir el curso.

Se aprueba con la elaboración de un trabajo final escrito basado en la bibliografía central, que deberá alcanzar una calificación mínima de Aceptable.

Examen libre. Para la aprobación de las unidades curriculares de carácter teórico, podrán rendir un examen libre aquellos estudiantes inscriptos al mismo. El examen versará sobre la totalidad del Programa del último curso impartido.

Conocimientos previos recomendados:

Historia y Filosofía de la Ciencia I, Lógica I, Inglés.

Objetivos:

El objetivo del curso es ofrecer una introducción al uso de métodos lógicos y probabilísticos en filosofía de la ciencia. Los estudiantes verán un repaso de lógica clásica y una introducción a las ideas centrales de la teoría de la probablidad y la inferencia Bayesiana. El tema central será el problema de la confirmación, pero también discutiremos problemas propios de la epistemología formal y la teoría de la causalidad.

Contenidos:

Unidad 1. (4 clases) Nociones fundamentales de lógica y teoría de la probablidad.

- Sintaxis y semántica de la lógica de primer orden
- ¿Qué es la lógica inductiva?
- Axiomas de Kolmogórov
- Probablididad condicional y teorma de Bayes

Unidad 2. (2 clases) Epistemología, lógica, y probablidad

- Probablidad objetiva y subjetiva
- Grados de creencia y justificación

Unidad 3. (4 clases) Inducción y confirmación.

- Problemas y paradojas de la inducción
- Confirmación hempeliana
- Confirmación hipotético-deductiva
- Confirmación Bayesiana

Unidad 4. (2 clases) Teorías de los conceptos

- Espacios conceptuales
- Aplicaciones a la filosofía de la ciencia

Bibliografía básica:

- 1. Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. MIT press.
- 2. Hacking, I. (2001). *An introduction to probability and inductive logic*. Cambridge university press.
- 3. Hansson, S. O., Hendricks, V. F., & Kjeldahl, E. M. (2018). *Introduction to formal philosophy*. Springer International Publishing AG, part of Springer Nature.
- 4. Horsten, L., & Douven, I. (2008). Formal methods in the philosophy of science. *Studia Logica*, 89(2), 151-162
- 5. Mormann, T. (2020). Topological aspects of epistemology and metaphysics. *Structures Mères: Semantics, Mathematics, and Cognitive Science*, 135-152.
- 6. Papineau, D. (2012). *Philosophical devices: Proofs, probabilities, possibilities, and sets*. OUP Oxford.
- 7. Schurz, G. (2013). *Philosophy of science: A unified approach*. Routledge.
- 8. Sprenger, J., & Hartmann, S. (2019). *Bayesian philosophy of science*. oxford university press.
- 9. Strevens, Michael (2006). The Bayesian approach to the philosophy of science. En D. M. Borchert (Ed.), *Encyclopedia of Philosophy*. Macmillan Reference. pp. 495--502.
- 10. Suppes, P. (2013). *Models and methods in the philosophy of science: Selected essays*. Springer.